3.2055 \(\int \frac{1}{\sqrt{1-2 x} (2+3 x)^2 (3+5 x)^2} \, dx\)

Optimal. Leaf size=106 \[ -\frac{340 \sqrt{1-2 x}}{77 (5 x+3)}+\frac{3 \sqrt{1-2 x}}{7 (3 x+2) (5 x+3)}-\frac{426}{7} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{650}{11} \sqrt{\frac{5}{11}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

[Out]

(-340*Sqrt[1 - 2*x])/(77*(3 + 5*x)) + (3*Sqrt[1 - 2*x])/(7*(2 + 3*x)*(3 + 5*x)) - (426*Sqrt[3/7]*ArcTanh[Sqrt[
3/7]*Sqrt[1 - 2*x]])/7 + (650*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/11

________________________________________________________________________________________

Rubi [A]  time = 0.0364174, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {103, 151, 156, 63, 206} \[ -\frac{340 \sqrt{1-2 x}}{77 (5 x+3)}+\frac{3 \sqrt{1-2 x}}{7 (3 x+2) (5 x+3)}-\frac{426}{7} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{650}{11} \sqrt{\frac{5}{11}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^2*(3 + 5*x)^2),x]

[Out]

(-340*Sqrt[1 - 2*x])/(77*(3 + 5*x)) + (3*Sqrt[1 - 2*x])/(7*(2 + 3*x)*(3 + 5*x)) - (426*Sqrt[3/7]*ArcTanh[Sqrt[
3/7]*Sqrt[1 - 2*x]])/7 + (650*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/11

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1-2 x} (2+3 x)^2 (3+5 x)^2} \, dx &=\frac{3 \sqrt{1-2 x}}{7 (2+3 x) (3+5 x)}+\frac{1}{7} \int \frac{41-45 x}{\sqrt{1-2 x} (2+3 x) (3+5 x)^2} \, dx\\ &=-\frac{340 \sqrt{1-2 x}}{77 (3+5 x)}+\frac{3 \sqrt{1-2 x}}{7 (2+3 x) (3+5 x)}-\frac{1}{77} \int \frac{1663-1020 x}{\sqrt{1-2 x} (2+3 x) (3+5 x)} \, dx\\ &=-\frac{340 \sqrt{1-2 x}}{77 (3+5 x)}+\frac{3 \sqrt{1-2 x}}{7 (2+3 x) (3+5 x)}+\frac{639}{7} \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx-\frac{1625}{11} \int \frac{1}{\sqrt{1-2 x} (3+5 x)} \, dx\\ &=-\frac{340 \sqrt{1-2 x}}{77 (3+5 x)}+\frac{3 \sqrt{1-2 x}}{7 (2+3 x) (3+5 x)}-\frac{639}{7} \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )+\frac{1625}{11} \operatorname{Subst}\left (\int \frac{1}{\frac{11}{2}-\frac{5 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=-\frac{340 \sqrt{1-2 x}}{77 (3+5 x)}+\frac{3 \sqrt{1-2 x}}{7 (2+3 x) (3+5 x)}-\frac{426}{7} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{650}{11} \sqrt{\frac{5}{11}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.070332, size = 100, normalized size = 0.94 \[ \frac{4550 \sqrt{55} \left (15 x^2+19 x+6\right ) \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )-11 \sqrt{1-2 x} (1020 x+647)}{847 (3 x+2) (5 x+3)}-\frac{426}{7} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^2*(3 + 5*x)^2),x]

[Out]

(-426*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/7 + (-11*Sqrt[1 - 2*x]*(647 + 1020*x) + 4550*Sqrt[55]*(6 + 1
9*x + 15*x^2)*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(847*(2 + 3*x)*(3 + 5*x))

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 70, normalized size = 0.7 \begin{align*}{\frac{6}{7}\sqrt{1-2\,x} \left ( -2\,x-{\frac{4}{3}} \right ) ^{-1}}-{\frac{426\,\sqrt{21}}{49}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) }+{\frac{10}{11}\sqrt{1-2\,x} \left ( -2\,x-{\frac{6}{5}} \right ) ^{-1}}+{\frac{650\,\sqrt{55}}{121}{\it Artanh} \left ({\frac{\sqrt{55}}{11}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2+3*x)^2/(3+5*x)^2/(1-2*x)^(1/2),x)

[Out]

6/7*(1-2*x)^(1/2)/(-2*x-4/3)-426/49*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)+10/11*(1-2*x)^(1/2)/(-2*x-6/5
)+650/121*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.76163, size = 149, normalized size = 1.41 \begin{align*} -\frac{325}{121} \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) + \frac{213}{49} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) + \frac{4 \,{\left (510 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 1157 \, \sqrt{-2 \, x + 1}\right )}}{77 \,{\left (15 \,{\left (2 \, x - 1\right )}^{2} + 136 \, x + 9\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^2/(3+5*x)^2/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

-325/121*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 213/49*sqrt(21)*log(-(sq
rt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 4/77*(510*(-2*x + 1)^(3/2) - 1157*sqrt(-2*x + 1))/
(15*(2*x - 1)^2 + 136*x + 9)

________________________________________________________________________________________

Fricas [A]  time = 1.68955, size = 365, normalized size = 3.44 \begin{align*} \frac{15925 \, \sqrt{11} \sqrt{5}{\left (15 \, x^{2} + 19 \, x + 6\right )} \log \left (-\frac{\sqrt{11} \sqrt{5} \sqrt{-2 \, x + 1} - 5 \, x + 8}{5 \, x + 3}\right ) + 25773 \, \sqrt{7} \sqrt{3}{\left (15 \, x^{2} + 19 \, x + 6\right )} \log \left (\frac{\sqrt{7} \sqrt{3} \sqrt{-2 \, x + 1} + 3 \, x - 5}{3 \, x + 2}\right ) - 77 \,{\left (1020 \, x + 647\right )} \sqrt{-2 \, x + 1}}{5929 \,{\left (15 \, x^{2} + 19 \, x + 6\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^2/(3+5*x)^2/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

1/5929*(15925*sqrt(11)*sqrt(5)*(15*x^2 + 19*x + 6)*log(-(sqrt(11)*sqrt(5)*sqrt(-2*x + 1) - 5*x + 8)/(5*x + 3))
 + 25773*sqrt(7)*sqrt(3)*(15*x^2 + 19*x + 6)*log((sqrt(7)*sqrt(3)*sqrt(-2*x + 1) + 3*x - 5)/(3*x + 2)) - 77*(1
020*x + 647)*sqrt(-2*x + 1))/(15*x^2 + 19*x + 6)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)**2/(3+5*x)**2/(1-2*x)**(1/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [A]  time = 2.06648, size = 157, normalized size = 1.48 \begin{align*} -\frac{325}{121} \, \sqrt{55} \log \left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{213}{49} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{4 \,{\left (510 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 1157 \, \sqrt{-2 \, x + 1}\right )}}{77 \,{\left (15 \,{\left (2 \, x - 1\right )}^{2} + 136 \, x + 9\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^2/(3+5*x)^2/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

-325/121*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 213/49*sqrt(21
)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 4/77*(510*(-2*x + 1)^(3/2) - 11
57*sqrt(-2*x + 1))/(15*(2*x - 1)^2 + 136*x + 9)